Increased Heat Shock Protein 70 Expression following Toxicant-mediated Cytotoxicity: A Ubiquitous Marker of Toxicant Exposure?

Author:

Farzaneh Parivash12,Allameh Abdolamir2,Pratt Steven1,Moore Nicholas1,Travis Lucy1,Gottschalg Elke1,Kind Clive3,Fry Jeffrey1

Affiliation:

1. School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK;

2. Department of Biochemistry, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Islamic Republic of Iran;

3. AstraZeneca, Loughborough, UK

Abstract

The up-regulation of heat shock protein (HSP) expression has been proposed as a general biomarker of cellular protection against various environmental stresses and chemicals. The present study investigated the possibility of using HSP70 up-regulation as a biomarker of toxicant exposure in vitro. Cells of a rat hepatoma cell line (FGC4) were exposed to concentrations of 1,3-dichloroacetone, duroquinone, diquat dibromide, menadione, hydrogen peroxide, cadmium chloride (CdCl2) and sodium (meta)arsenite (NaAsO2) that elicited 20–50% cytotoxicity over a 24-hour period, and HSP70 levels were measured by ELISA. Up-regulation of HSP70 expression was demonstrated following treatment with menadione, CdCl2 and NaAsO2, but not with the other chemicals tested. A shorter exposure time (6 hours) and/or the use of non-toxic concentrations reduced the level of HSP70 up-regulation with menadione, CdCl2 and NaAsO2, but did not uncover any up-regulation with the other chemicals. Although the toxicity of the majority of the chemicals tested is believed to involve an oxidative stress component, the results of this study clearly demonstrate that up-regulation of HSP70 expression cannot be used as a general biomarker of toxicant exposure in vitro.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3