S-Adenosylmethionine Exerts a Protective Effect against Thioacetamide-induced Injury in Primary Cultures of Rat Hepatocytes

Author:

Lotková Halka1,Čvervinková Zuzana1,Kučera Otto1,Roušar Tomáš1,Křiváková Pavla1

Affiliation:

1. Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic

Abstract

S-adenosylmethionine (SAMe) has been shown to protect hepatocytes from toxic injury, both experimentally-induced in animals and in isolated hepatocytes. The mechanisms by which SAMe protects hepatocytes from injury can result from the pathways of SAMe metabolism. Unfortunately, data documenting the protective effect of SAMe against mitochondrial damage from toxic injury are not widely available. Thioacetamide is frequently-used as a model hepatotoxin, which causes in vivo centrilobular necrosis. Even though thioacetamide-induced liver necrosis in rats was alleviated by SAMe, the mechanisms of this protective effect remain to be verified. The aim of our study was to determine the protective mechanisms of SAMe on thioacetamide-induced hepatocyte injury by using primary hepatocyte cultures. The release of lactate dehydrogenase (LDH) from cells incubated with thioacetamide for 24 hours, was lowered by simultaneous treatment with SAMe, in a dose-dependent manner. The inhibitory effect of SAMe on thioacetamide-induced lipid peroxidation paralleled the effect on cytotoxicity. A decrease in the mitochondrial membrane potential, as determined by Rhodamine 123 accumulation, was also prevented. The attenuation by SAMe of thioacetamide-induced glutathione depletion was determined after subsequent incubation periods of 48 and 72 hours. SAMe protects both cytoplasmic and mitochondrial membranes. This effect was more pronounced during the development of thioacetamide-induced hepatocyte injury that was mediated by lipid peroxidation. Continuation of the SAMe treatment then led to a reduction in glutathione depletion, as a potential consequence of an increase in glutathione production, for which SAMe is a precursor.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3