Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis

Author:

Heaton James T.12ORCID,Kobler James B.12,Otten David M.3,Hillman Robert E.12,Zeitels Steven M.12

Affiliation:

1. Department of Surgery, Harvard Medical School, Boston, MA, USA

2. Division of Laryngeal Surgery, Massachusetts General Hospital, Boston, MA, USA

3. Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Objective: Laryngeal paralysis of central or peripheral origin can potentially be treated using functional electrical stimulation (FES) of laryngeal muscles. Experiments in canines (dogs) were performed using implant prototypes capable of closed-loop FES to refine engineering designs and specifications, test surgical approaches for implantation, and better understand the in vivo effects of laryngeal muscle stimulation on short- and long-term glottic function. Study Design: Prospective, laboratory. Methods: We designed and tested a series of microprocessor-based implantable devices that can stimulate glottic opening or closing based on input from physiological control signals (real-time processing of electromyographic [EMG] signals). After acute device testing experiments, 2 dogs were implanted for 8 and 24 months, with periodic testing of closed-loop laryngeal muscle stimulation triggered from EMG signals. In total, 5 dogs were tested for the effects of laryngeal muscle stimulation on vocal fold (VF) posturing in larynges with nerve supplies that were intact (7 VFs), synkinetically reinnervated (2 VFs), or chronically denervated (1 VF). In 3 cases, the stimulation was combined with airflow-driven phonation to study the consequent modulation of phonatory parameters. Results: Initial device prototypes used inductive coupling for power and communication, while later iterations used battery power and infrared light communication (detailed descriptions are provided in the Part 1 companion paper). Two animals were successfully implanted with the inductively powered units, which operated until removed at 8 months in 1 animal or for more than 16 months in the second animal. Surgically, the encapsulated implants were well tolerated, and procedures for placing, attaching, and connecting the devices were developed. To simulate EMG control signals in anesthetized animals, we created 2 types of nerve/muscle signal sources. In one approach, a neck muscle had a cuff electrode placed on its motor nerve that was connected to transdermal electrical connection ports for periodic testing. In the second approach, the recurrent laryngeal nerve on one side of the larynx was stimulated to generate a VF EMG signal, which was then used to trigger FES of the paralyzed contralateral side (eg, restoring VF movement symmetry). Implant testing identified effective stimulation parameters and closed-loop stimulation artifact rejection techniques for FES of both healthy and paralyzed VFs. Stimulation levels effective for VF adduction did not cause signs of discomfort during awake testing. Conclusion: Our inductive and battery-powered prototypes performed effectively during in vivo testing, and the 2 units that were implanted for long-term evaluation held up well. As a proof of concept, we demonstrated that elicited neck strap muscle or laryngeal EMG potentials could be used as a control signal for closed-loop stimulation of laryngeal adduction and vocal pitch modulation, depending on electrode positioning, and that VFs were stimulable in the presence of synkinetic reinnervation or chronic denervation.

Funder

National Philanthropic Trust

Voice Health Institute

Eugene B. Casey Foundation

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3