Cure kinetics and autoclave-pressure dependence on physical and mechanical properties of woven carbon/epoxy 8552S/AS4 composite laminates

Author:

Baghad Abd12,El Mabrouk Khalil1ORCID,Vaudreuil Sébastien1,Nouneh Khalid2

Affiliation:

1. Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes (UEMF), Fes, Morocco

2. Laboratory of Material Physics and Subatomic, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

Abstract

The final mechanical properties of composite laminates are highly dependent on their curing cycles in the autoclave. During this cycle, the temperature, pressure, vacuum, and treatment time will influence the quality of manufactured parts. The void content is considered the most harmful defects in carbon/epoxy laminates since they weaken the matrix-dominated mechanical properties such as interlaminar shear and compressive strengths. In the present work, differential scanning calorimetry is used to characterize the influence of time/temperature on the behavior of the epoxy resin. Then, a series of [0/90/−45/+45]s laminates composites are autoclave-cured under various applied pressures to evaluate their impact on microstructure and mechanical properties. The interlaminar shear modulus, interlaminar shear strength, laminate compressive modulus, and laminate compressive strength at room and operating engine temperature were measured. The correlation between microstructure and mechanical properties was also studied. The mechanical properties of manufactured carbon/epoxy laminates are found to be dependent on pressure and microstructure. These results are explored to establish an optimal autoclave pressure route that would minimize porosity without counterbalancing mechanical properties.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3