A Microlens Array with Different Focal Lengths Fabricated by Roll-To-Roll UV Lithography

Author:

Ye Huichun1,Shen Lianguan1,Li Mujun1,Li Likai2

Affiliation:

1. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

2. Department of Integrated Systems Engineering, the Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA

Abstract

A simple, highly efficient and low cost roll-to-roll (R2R) UV imprinting lithography facility was achieved for fabricating micro-structures. Firstly, a novel microlens array with focuses distributed on a curved surface was designed and analyzed by an optical software ZEMAX. Then an ultra-precision diamond machine was applied to generate the freeform microlens array features on the master mold, and a belt-type polydimethylsiloxane (PDMS) mold with a microlens array pattern was prepared from the machined master mold. The R2R process was employed to replicate the microlens arrays, followed by an evaluation of their profiles and optical properties. Our experiments demonstrate that the applied method is reliable and efficient for producing the polymeric microlens arrays.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3