Hybrid siliconized–epoxidized EPDM/polyurethane (eEPDM-g-APTES/HTPDMS/PU) matrices for potential application in cable insulation

Author:

Vadivel Manokaran1ORCID,Kumar Moses Suresh Chandra2,Mohaideen Jabbar Abbas1,Alagar Muthukaruppan3,Sankarganesh Murugesan4,Raja Jeyaraj Dhaveethu5

Affiliation:

1. Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram (Dist), Tamil Nadu, India

2. Polymer Nanocomposite Centre, Scott Christian College, Nagercoil, Kanyakumari (Dist), Tamil Nadu, India

3. Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore, Tamil Nadu, India

4. Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Trichy, Tamil Nadu, India

5. Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu, India

Abstract

Hybrid matrices (epoxidized of ethylene–propylene–diene monomer (eEPDM) -g-aminopropyltriethoxysilane (APTES)/hydroxyl terminated polydimethylsiloxane (HTPDMS)/polyurethane (PU)) were developed based on eEPDM with 3-APTES coupling agent and varying weight percentages (0.75, 1.50, 2.25, and 3.00 wt%) of PU prepolymer as coreactant using 7.5 wt% of HTPDMS as chain extender using suitable experimental conditions. The formation of hybrid matrices and their structure were characterized by Fourier transform infrared (FTIR). The thermal and morphological properties of the hybrid matrices were analyzed using differential scanning calorimetry and scanning electron microscope, respectively. Mechanical properties (tensile strength, elongation at break (%), Young’s modulus, and hardness) were characterized as per ASTM standards. Data resulted from mechanical studies, it was noticed that the incorporation of 3-APTES, HTPDMS, and PU into eEPDM has improved the elongation at break (%) and lowered the values of tensile strength, Young’s modulus, and hardness according to the percentage concentration. Morphological studies indicate the presence of heterogeneous morphology. Data obtained from different studies, it suggested that the hybrid matrices developed in the present work can be used as cable insulates for high-performance industrial and engineering applications.

Funder

SATHAK RESEARCH FOUNDATION KILAKARAI

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3