Morphology and physico-mechanical properties of poly (methyl methacrylate)/polystyrene/polypropylene ternary polymer blend and its nanocomposites with organoclay: The effect of nature of organoclay and method of preparation

Author:

Rostami Amir1ORCID,Vahdati Mehdi2,Nowrouzi Mohsen3,Karimpour Mohammadreza4,Babaei Amir5

Affiliation:

1. Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran

2. Department of Polymer Engineering, Amirkabir University of Technology-Mahshahr Campus, Bandar-e Mahshahr, Iran

3. Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran

4. Department of Polymer Engineering, Islamic Azad University, Mahshahr Branch, Bandar-e Mahshahr, Iran

5. Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

Abstract

This work presents the role of organoclay type (hydrophilic C30B vs hydrophobic C15A) and feeding mode (sequential vs. simultaneous) on a model ternary blend system poly (methyl methacrylate)/polystyrene/polypropylene (PMMA/PS/PP, 80/05/15). The rheological and thermal properties of these nanocomposites are linked to their morphology, which is mainly controlled by the preparation method and the nature of the organoclays. Using oscillatory shear rheology and dynamic mechanical analyses, both organoclays were shown to be mainly localized in the PMMA matrix. However, the more polar C30B showed a greater affinity toward the matrix. Studying the morphology using electron microscopy revealed that at 1 wt% of the organoclays, the original core-shell morphology of the blend was retained regardless of the feeding sequence. At 3 wt% of the organoclays, however, the core-shell morphology was only retained in the case of C30B-based nanocomposites prepared using sequential feeding mode. In the other cases, the increased solid-like behavior of the PS phase prevented the formation of a shell. Overall, it was shown that the feeding sequence and the affinity of organoclays towards different blend components determined their localization and therefore the eventual morphology of the nanocomposite.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3