Development and performance analysis of wear resistant polypropylene composites filled with micro sized Linz–Donawitz sludge particulates

Author:

Purohit Abhilash1ORCID,Satapathy Alok1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Rourkela, India

Abstract

Integrated steel plants, in general, produce large amounts of solid wastes during the production of iron and steel. Linz–Donawitz sludge (LDS) is an industrial solid waste generated in huge quantities during steelmaking. These fine solid particles were recovered after wet cleaning of the gas emerging from LD converters. This work aims at processing, characterization, and wear response of a class of polypropylene composites utilizing LDS as a filler material. Mechanical properties of these thermoplastic composites were evaluated under standard test conditions. The actual and the theoretical density values of the polypropylene-LDS composites were measured using Archimedes’ principle and rule of mixture respectively. The micro-structural features of the worn surfaces of various particulate filled composite specimens were examined using scanning electron microscopy in order to ascertain the wear mechanisms. X-Ray Diffraction analysis was carried out to determine the phases and planes of the components present within a material. Sliding wear tests were conducted using Taguchi’s L25 orthogonal arrays over a range of sliding velocities (0.63–3.15 m/s), normal loads (5–25  N), sliding distances (500–2500 m), and LDS contents (0–20 wt.%). The sliding wear tests were performed on the prepared polypropylene-LDS composite specimens as per ASTM G99 using Taguchi’s Orthogonal Arrays followed by the parametric appraisal of the wear process by response surface methodology (RSM). Both Taguchi analysis and RSM suggest that the filler content and the sliding velocity are the most significant factors affecting the specific wear rate of the composite specimens. This work opens up a new avenue for the utilization of LD sludge as a potential filler material.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3