Theoretical modeling and experimental verification of co-curing carbon fiber-reinforced polymer hat-stiffened panels with silicone airbag male mandrels

Author:

Zhu Shuai1ORCID,Peng Wenfei1

Affiliation:

1. Mechanical Department, Zhejiang Provincial Key Laboratory of Part Rolling Technology, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, People’s Republic of China

Abstract

For closed-hole panels such as hat-stiffened panels, it is inevitable to use mandrels during the manufacturing process. However, the uniformity of pressure transmission of the silicone rubber mandrel with the prefabricated hole is not good, the vacuum bag mandrel is easy to be broken and wrinkled, the water-soluble mandrel is high in cost, and the invar steel metal mandrel is difficult to demold. To solve these problems, this article proposed a new method for co-curing carbon fiber-reinforced resin matrix composite hat-stiffened panels by using a silicone airbag as a mandrel through autoclaves. Firstly, the thermo-force-flow multi-field coupling finite element model of co-curing carbon fiber-reinforced polymer (CFRP) hat-stiffened panels was established by using finite element software. The co-curing process of hat-stiffened panels was simulated and studied. The influence of different thickness of silicone airbag mandrels on the wall thickness and pressure of the workpiece were found to be relatively uniform in the new process. Then, the autoclave experiment was carried out to verify the correctness of the finite element model. Lastly, the interfacial bonding strength test was carried out to verify the mechanical properties of the parts. In summary, the practicability of co-curing CFRP hat-stiffened panels with silicone airbag male mandrels was proved in this article. The precision of CFRP hat-stiffened panel was efficiently promoted by this new process.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3