A micromechanical approach to the mechanical characterization of 3D-printed composites

Author:

Sayyidmousavi Alireza1ORCID,Fawaz Zouheir2

Affiliation:

1. Department of Mathematics, Ryerson University, Toronto, Canada

2. Department of Aerospace Engineering, Ryerson University, Toronto, Canada

Abstract

Aiming for the development of experimentally validated computational models to predict the mechanical properties of 3D-printed composites, the present study proposes a micromechanical approach by using a simplified unit cell model to characterize the material properties and behavior of 3D-printed composites manufactured through fused deposition modeling. The effective properties of the voided polymer matrix phase of the material are computed by calculating the void density as a tensorial meso-structural variable. These effective properties along with those of the fiber are input into a simplified micromechanical model to predict the material properties of the 3D-printed composite. The predictions are seen to be in very good agreement with the experimental values. The present approach is much simpler and less computationally costly compared to the finite element homogenization method. In addition, the present approach has the potential to simulate the response of the 3D-printed composite under different loading conditions.

Funder

Natural Sciences and Engineering Research Council of Canada-Discovery Grant Program

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3