Experimental and numerical determination of critical osmotic blister size affecting the strength of aged FRP seawater pipe

Author:

Abd-Elhady Amr A1,Meroufel Abdelkader2,Sallam Hossam El-Din M3ORCID,Atta Mahmoud4

Affiliation:

1. Mechanical Design Department, Faculty of Engineering, Helwan University, Cairo, Egypt

2. Desalination Technologies Research Institute (DTRI), Jubail, Saudi Arabia

3. Materials Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt

4. Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt

Abstract

Glass fiber-reinforced polymer (GFRP) composite pipelines are used by many industries for fluids transport including seawater for cooling. The durability of these pipes can be affected where the loss of their strength is due to the occurrence of several internal irreversible micro-damages. One of the challenges facing the integrity of these pipelines is the presence of surface defects. The present research aims to determine the critical size of osmotic blister affecting a 30- year-old seawater handling GFRP pipe. Osmotic blisters were simulated through surface notches with two different geometries and sizes. Longitudinal pipe mechanical strength was studied through tensile tests to study the effect of the surface notch size. At a certain surface notch depth, the strength of the pipe wall decreased with increasing the notch surface depth. This represents the critical value of the damage size called maximum undamaged defect size and noted d max. Damage with size below d max does not affect the strength of the pipe wall. To simulate the progressive failure of this aged composite, a 3-D finite element model was employed based on Hashin’s failure criteria.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3