Affiliation:
1. Department of Mechanical and Automotive Engineering, College of Engineering and Technology, Dilla University, Dilla, Ethiopia
Abstract
Composites were manufactured from glass fiber, bagasse fly ash, and epoxy matrix and examined their mechanical and physical properties. The percentages of bagasse fine ash, glass fiber, and matrix were designed at 10%, 15%, 20%, 25%, and 30% with 30% glass fiber and conducted density, flexural strength, hardness, absorption of water, and swelling properties of thickness. Composites were prepared by manual layering. ASTM standards were followed in preparing the samples. According to the results, the bagasse fine ash percentage variation was significant in the composite but had no linear effects on its hardness and flexural strength. A 20% bagasse fine ash composite had the highest flexural strength and hardness at 27.65 MPa and 52.86 HRA, respectively, which are significantly (>0.002) higher than composites of 30% bagasse fine ash, along with the highest density. This study measured water absorption and swelling of composite samples immersed in distilled water for 192 h. As the bagasse ash content increases, these values were linearly increased until saturation occurs.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献