Investigating the influence of sugarcane bagasse ash volume variation in glass fiber reinforced with epoxy resin matrix composite material

Author:

Wondmagegnehu Belay Taye1ORCID

Affiliation:

1. Department of Mechanical and Automotive Engineering, College of Engineering and Technology, Dilla University, Dilla, Ethiopia

Abstract

Composites were manufactured from glass fiber, bagasse fly ash, and epoxy matrix and examined their mechanical and physical properties. The percentages of bagasse fine ash, glass fiber, and matrix were designed at 10%, 15%, 20%, 25%, and 30% with 30% glass fiber and conducted density, flexural strength, hardness, absorption of water, and swelling properties of thickness. Composites were prepared by manual layering. ASTM standards were followed in preparing the samples. According to the results, the bagasse fine ash percentage variation was significant in the composite but had no linear effects on its hardness and flexural strength. A 20% bagasse fine ash composite had the highest flexural strength and hardness at 27.65 MPa and 52.86 HRA, respectively, which are significantly (>0.002) higher than composites of 30% bagasse fine ash, along with the highest density. This study measured water absorption and swelling of composite samples immersed in distilled water for 192 h. As the bagasse ash content increases, these values were linearly increased until saturation occurs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3