Effects of the fillers on the interface strength of the hat-stiffened composite panel

Author:

Liu Longquan1ORCID,Guan Zhongwei2

Affiliation:

1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

2. School of Engineering, University of Liverpool, Liverpool, UK

Abstract

Hat-stiffened composite skins have been widely used in primary structures of aircraft components. The bonding strength at the stiffener-skin interface is critical to ensure the advanced load-bearing capacity of the stiffened skin, whereas, the deltoid regions are usually the weakest locations because of the geometrical singularity. Inserting fillers into the deltoid regions could alter the bonding strength. In this study, a series of four-point bending tests are conducted on the co-cured hat-stiffened composite skin specimens with and without fillers and with different pre-fabricated debonding defects, furthermore, finite element simulations are implemented to predict the failure process. The stiffness, initial failure load, failure mode and failure process are analyzed to obtain the influences of the fillers on the damage tolerance of the hat-stiffened composite panels, and the influential mechanisms were revealed by the combined analyses of the test and simulation results. It is found that the usage of fillers can increase the initial stiffness of the panel without prefabricated defects by about 10%, but provide limited influence on the initial failure load. The pre-fabricated debonding defect along longitudinal direction has little influence on the stiffness and failure load, but the influence of the defect along transverse direction are higher. The initial failure of all hat-stiffened composite panels with/without filler and with/without prefabricated defects under four-point bending onsets around the deltoid region. The usage of the fillers changed the load transfer and the stress status in the deltoid region of the hat-stiffened composite panels and as a consequence, the initial failure modes were changed and the failure load were increased by the fillers. This work provides a technical support for the damage tolerance design and strengthening method of hat-stiffened composite structures.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3