Affiliation:
1. Jiangsu University of Science and Technology, P. R. China
2. Nanjing Tech University, P. R. China
3. Chinese Academy of Sciences, P. R. China
Abstract
Adsorption is one of the most promising methods for desulfurization of transportation fuels, due to the strategy which enables removal of organic sulfur compounds to be conducted at ambient conditions with high efficiency. Adsorbent is the key to the adsorptive performance. Both π complexation and direct sulfur metal bonds are efficient methods for adsorptive desulfurization. For construction of these bonds, it is necessary to introduce active metal species on the support. In this work, Ce(NO3)2 was directly introduced into the as-synthesized SBA-15, and high dispersion of CeO2 nanoparticles was obtained. With the loading content of 12–46 wt%, the particle sizes of the CeO2 NPs are in the range of 4.4–6.3 nm. The good dispersion status of CeO2 nanoparticles is contributed to the template P123 preserved in as-synthesized SBA-15, which provides a confined space for the dispersion of CeO2 nanoparticles. However, the large CeO2 particles (7.0 nm) are formed for the sample originated from template-free SBA-15. We also demonstrate that the adsorptive performance of SBA-15 is enhanced with the modification of CeO2 nanoparticles. Besides, the performances of CeO2 nanoparticle-modified samples stay in step with the dispersion status of the CeO2 nanoparticles.
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献