Adsorption of Pb2+, Cu2+ and Zn2+ Ions on to Waste Fluidized Catalytic Cracking (FCC) Catalyst

Author:

Yubin Tang1,Fangyan Chen1,Honglin Zhang1

Affiliation:

1. Department of Applied Chemistry. Research Institute of Environmental Engineering, Fushun Petroleum Institute, Fushun, Liaoning Province 113001, People's Republic of China

Abstract

Batch adsorption experiments of Pb2+ Cu2+ and Zn2+ ions on to waste fluidized catalytic cracking (FCC) catalyst were performed. The results obtained indicate that adsorption time, temperature and pH were the main factors influencing the adsorptive capacities. The adsorption data for each ion were well described by the Freundlich and Langmuir adsorption models. The mechanisms for the adsorption of Pb2+, Cu2+ and Zn2+ ions on to waste FCC catalyst involved ion-exchange adsorption of the three kinds of heavy metallic ions studied or the formation of hydroxo complexes. Under the experimental conditions employed, the removal of Pb2+, Cu2+ and Zn2+ ions attained values of 97.0%, 90.5% and 91.5%. respectively. In addition, dynamic adsorption of the respective ions on to a column of FCC catalyst was investigated together with studies of the regeneration of the adsorbent. The results of such column tests showed that Pb2+ ions can be effectively removed from aqueous solutions by waste FCC catalyst in a packed bed. The adsorbent was easily regenerated by the use of a flow of hydrochloric acid through the packed bed under the experimental conditions employed.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Reference8 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3