Lifetime radiation risk of stochastic effects – prospective evaluation for space flight or medicine

Author:

Ulanowski A.12,Kaiser J.C.1,Schneider U.34,Walsh L.3

Affiliation:

1. Helmholtz Zentrum München, German Research Center for Environmental Health, Germany

2. International Atomic Energy Agency, IAEA Environment Laboratories, A-2444 Seibersdorf, Austria (current);

3. University of Zürich, Switzerland

4. Radiotherapy Hirslanden, Switzerland

Abstract

The concept of lifetime radiation risk of stochastic detrimental health outcomes is important in contemporary radiation protection, being used either to calculate detriment-weighted effective dose or to express risks following radiation accidents or medical uses of radiation. The conventionally applied time-integrated risks of radiation exposure are computed using average values of current population and health statistical data that need to be projected far into the future. By definition, the lifetime attributable risk (AR) is an approximation to more general lifetime risk quantities and is only valid for exposures under 1 Gy. The more general quantities, such as excess lifetime risk (ELR) and risk of exposure-induced cancer, are free of dose range constraints, but rely on assumptions concerning the unknown total radiation effect on demographic and health statistical data, and are more computationally complex than AR. Consideration of highly uncertain competing risks for other radiation-attributed outcomes are required in appropriate assessments of time-integrated risks of specific outcomes following high-dose (>1 Gy) exposures, causing non-linear dose responses in the resulting ELR estimate. Being based on the current population and health statistical data, the conventionally applied time-integrated risks of radiation exposure are: (i) not well suited for projections many years into the future because of the large uncertainties in future secular trends in the population-specific disease rates; and (ii) not optimal for application to atypical groups of exposed persons not well represented by the general population. Specifically, medical patients are atypical in this respect because their prospective risks depend strongly on the original diagnosis, the treatment modality, general cure rates, individual radiation sensitivity, and genetic predisposition. Another situation challenging the application of conventional risk quantities is a projection of occupational radiation risks associated with space flight, both due to higher radiation doses and astronauts’ generally excellent health condition due to pre-selection, training, and intensive medical screening. An alternative quantity, named ‘radiation-attributed decrease of survival’ (RADS), known in past general statistical literature as ‘cumulative risk’, is recommended here for applications in space and medicine to represent the cumulative radiation risk conditional on survival until a certain age. RADS is only based on the radiation-attributed hazard rendering an insensitivity to competing risks or projections of current population statistics far into the future. Therefore, RADS is highly suitable for assessing semi-personalised radiation risks after radiation exposures from space missions or medical applications of radiation.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3