The Potential for Increasing the Iron and Zinc Density of Maize through Plant-breeding

Author:

Bänziger Marianne1,Long Jennifer2

Affiliation:

1. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Harare, Zimbabwe.

2. Plant Breeding and Biometry Department at Cornell University in Ithaca, New York, USA.

Abstract

The Centro Internacional de Mejoramiento de Maiz y Trigo ( CIMMYT) maize-breeding programme has been focusing on identifying white-grained maize germplasm that has the potential to increase kernel iron and zinc concentrations, especially in sub-Saharan Africa. In addition, research at Cornell University has focused on traits such as multiple aleurone layer, which can increase kernel iron and zinc concentrations, and low phytic acid concentration, which holds promise for improving the bioavailability of iron and zinc. More than 1,400 improved maize genotypes and 400 landraces were grown and evaluated to assess grain iron and zinc concentrations. These materials represented all white-grained landraces that belonged to the core collection of CIM-MYT's germplasm bank, all white- and yellow-grained CIMMYT maize germplasm pools and populations, all white-grained materials that are currently in the active breeding programme of CIMMYT-Zimbabwe, and 57 white-grained maize cultivars currently grown in southern Africa. After a very thorough evaluation of the genetic variability of iron and zinc potentially available in white-grained tropical maize germplasm, promising genetic variability was found in both improved maize germplasm and landraces. One difficulty that maize breeders encounter is that grain iron and zinc concentrations are often correlated negatively with grain yield, which may result from the increased carbohydrate content of high-yielding materials, so that a given amount of iron and zinc is diluted. The multiple aleurone trait may be a fast track to overcome this effect. This trait is being introgressed into various materials in both the United States and southern Africa.

Publisher

SAGE Publications

Subject

Nutrition and Dietetics,Geography, Planning and Development,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3