IN VITRO EFFECTS OF FLUORIDE ON TRICARBOXYLIC ACID CYCLE DEHYDROGENASES AND OXIDATIVE PHOSPHORYLATION: PART I

Author:

LOVELACE C. JAMES1,MILLER GENE W.1

Affiliation:

1. Humboldt State College, Arcata, California, and Utah State University, Logan, Utah

Abstract

Studies were conducted on the in vitro effect of fluoride on the succinic oxidase system utilizing mitochondria obtained from cauliflower. Preincubation of mitochondria with fluoride did not increase inhibition of succinic oxidase. Various other tricarboxylic acid cycle substrates were used to determine their sensitivity to fluoride; only succinate oxidation was affected. A series of succinate concentrations in the presence and in the absence of fluoride showed increased activity of succinic dehydrogenase, which indicated competitive inhibition. Various concentrations of phosphate in the absence of fluoride showed that phosphate had only slight effects on the succinic 2,6-dichlorophenolindophenol reductase component of the succinic oxidase system. In the absence of phosphate, various concentrations of fluoride showed an initial increase in activity followed by a decrease in activity of succinic 2,6-dichlorophenolindophenol reductase. In the presence of phosphate, fluoride caused marked inhibition of succinic 2,6-dichlorophenolindophenol reductase. It is believed that this inhibition results from an enzyme-fluorophosphate complex which has a lower dissociation constant than that of the enzyme-substrate complex. An oxidative phosphorylation study indicated that both respiration and phosphorylation were inhibited.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aqueous Humor Outflow Requires Active Cellular Metabolism in Mice;Investigative Opthalmology & Visual Science;2020-08-26

2. Effects of Fluoride on Respiration and Photosynthesis in Plants: An Overview;Annals of Environmental Science and Toxicology;2018-03-18

3. Fluoride Sources, Toxicity and Its Amelioration: A Review;Annals of Environmental Science and Toxicology;2018-01-21

4. Epigallocatechin gallate potentially attenuates Fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats;Journal of Trace Elements in Medicine and Biology;2015-01

5. Effects of air pollutants on the pathways of carbohydrate breakdown;Plant Responses to the Gaseous Environment;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3