Mouse B1 cell line responds to lipopolysaccharide via membrane-bound CD14

Author:

Koide Naoki1,Sugiyama Tsuyoshi2,Kato Yutaka1,Chakravortty Dipshika1,Mya Mya Mu 1,Yoshida Tomoaki1,Hamano Teruaki3,Yokochi Takashi1

Affiliation:

1. Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan

2. Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan,

3. Department of Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan

Abstract

The role of membrane-bound CD14 in the response of mouse B1 cell lines to lipopolysaccharide (LPS) was studied. The surface profile of mouse TH2.52 B cells was positive for CD5, IgM, B220, CD11b and F4/80, suggesting that TH2.52 cells carried the typical phenotype of B1 cells. Furthermore, TH2.52 B1 cells were found to express membrane-bound CD14, which plays a critical role in LPS recognition. TH2.52 B1 cells responded to a very low concentration of LPS and exhibited: (i) augmentation of DNA synthesis; (ii) activation of nuclear factor (NF)-κB; and (iii) phosphorylation of extracellular signal regulated kinase 1/2 (Erk1/2). They were markedly inhibited by anti-CD14 antibody. Therefore, the expression of membrane-bound CD14 was suggested to provide high sensitivity to LPS for TH2.52 B1 cells.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3