Dust deposition tracks late-Holocene shifts in monsoon activity and the increasing role of human disturbance in the Puna-Altiplano, northwest Argentina

Author:

Hooper James1ORCID,Marx Samuel K1ORCID,May Jan-Hendrik12,Lupo Liliana C3,Kulemeyer Julio J4,Pereira Elizabeth de los Á3,Seki Osamu5,Heijnis Henk6,Child David6,Gadd Patricia6,Zawadzki Atun6

Affiliation:

1. GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia

2. School of Geography, The University of Melbourne, Australia

3. Laboratorio de Palinología Facultad de Ciencias Agrarias, Instituto de Ecorregiones Andinas (INECOA), UNJu-CONICET, Argentina

4. Instituto de Datación y Arqueometría (InDyA), CONICET-UNJu-UNT-Gobierno de Jujuy, Argentina

5. Institute of Low Temperature Science, Hokkaido University, Japan

6. Institute for Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO), Australia

Abstract

The Puna-Altiplano plateau represents a regionally significant dust source, which is critically located at the nexus between the tropical and sub-polar synoptic systems that dominate the South American climate. Dust emissions in this region would therefore be expected to be sensitive to changes in these systems, in particular the strength and position of the South American Summer Monsoon (SASM). Here, we present a late-Holocene multi-proxy study where changes in dust flux, reconstructed from a high-altitude peat mire, are examined in light of climate variability and human impacts. Results show that for most the 4300 cal. yr BP record, dust flux sensitively tracked changes in SASM activity. Prior to 2600 cal. yr BP relatively high dust flux implies dry conditions prevailed across the Puna-Altiplao in association with reduced SASM activity. The chemistry of dust deposited at this time matched the large endorheic basins on the Puna, which host ephemeral lakes and terminal fans, indicating these were actively supplying dust to the airstream. After 2600 cal. yr BP, SASM activity increased while dust flux decreased and the dust chemistry changed, collectively implying the shutting down of the Puna-Altiplano as a significant dust source. Dust flux increased after 1000 cal. yr BP during the ‘Medieval Warm Period’, associated with a return to drier conditions and reactivation of dust sources across the endorheic basins of the Puna. Natural variability in dust flux was dwarfed, however, by the very significant increase in flux after 400 cal. yr BP following Spanish Colonisation and associated changing landuse practices. This finding attests to the globally significant role of humans on dust emissions.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3