New evidence for active talus-foot rock glaciers at Øyberget, southern Norway, and their development during the Holocene

Author:

Nesje Atle1ORCID,Matthews John A2,Linge Henriette1,Bredal Marie3,Wilson Peter4,Winkler Stefan5

Affiliation:

1. Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Norway

2. Department of Geography, College of Science, Singleton Park, Swansea University, UK

3. Geological Survey of Norway, Norway

4. School of Geography and Environmental Sciences, Ulster University, UK

5. Department of Geography and Geology, Julius-Maximilians-University Würzburg, Germany

Abstract

Synthetic aperture radar interferometry (InSAR) measurements demonstrate that lobate, blocky depositional landforms, located in southern Norway at an altitude of ~530 m above sea level, with an estimated mean annual air temperature of ~1.6°C, currently exhibit deformation attributed to viscous creep. Five years of InSAR measurements for six lobes demonstrate average surface velocities of 1.2–22.0 mm/year with maximum rates of 17.5–55.6 mm/year. New Schmidt-hammer exposure-age dating (SHD) of two proximal lobes reveals mid-Holocene ages (7.6 ± 1.3 ka and 6.0 ± 1.2 ka), which contrast with the early-Holocene SHD and 10Be ages obtained previously from distal lobes, and late-Holocene SHD ages presented here from two adjacent talus slopes (2.3 ± 1.0 ka and 2.4 ± 1.0 ka). Although passive transport of boulders on the surfaces of these small, slow-moving rock glaciers affected by compressive flow means that the exposure ages are close to minimum estimates of the time elapsed since lobe inception, disturbance of boulders on rock glaciers is a source of potentially serious underestimates of rock-glacier age. Rock-glacier development at Øyberget began shortly after local deglaciation around 10 ka before present and continued throughout the Holocene in response to microclimatic undercooling within the coarse blocky surface layer of the talus and rock-glacier lobes. We suggest this enhanced cooling lowers mean annual surface-layer temperature by at least ~3.6°C, which is needed at such a low altitude to sustain sporadic permafrost and avoid fast thawing as atmospheric temperatures rise. Our results point to circumstances where inferences about rock glaciers as indicators of regional climate should be interpreted with caution, and where they may be less useful in palaeoclimatic reconstruction than previously thought.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3