Reconstructed high-resolution forest dynamics and human impacts of the past 2300 years of the Parc national de Mont-Orford, southeastern Québec, Canada

Author:

O’Neill Sanger Claire E1,St-Jacques Jeannine-Marie1ORCID,Peros Matthew C2,Schwartz Kayden Avery1

Affiliation:

1. Department of Geography, Planning and Environment, Concordia University, Québec, Canada

2. Department of Environment and Geography, Bishop’s University, Québec, Canada

Abstract

We used a high-resolution lacustrine pollen record from Étang Fer-de-Lance (45°21′21.9′N, 72°13′35.3′W), southeastern Québec, Canada, together with microcharcoal, to infer forest dynamics and human impacts over the past 2300 years. The lake is located in the eastern sugar maple-basswood forest domain of the Northern Temperate Forest of eastern North America. We found that the pollen percentages and influxes of Fagus grandifolia (American beech) and Tsuga canadensis (eastern hemlock) significantly declined over the past 700 years. Over the last millennium, the pollen percentages and influxes of the Picea species ( P. glauca, P. mariana, P. rubens) (white, black, and red spruce), and Pinus strobus (eastern white pine) significantly increased. We showed that these shifts in forest composition are being driven by changes in regional climate. In addition to the pollen percentage changes, the Medieval Climate Anomaly (AD 800–1300) appeared as increased pollen influxes and the Dark Ages Cold Period (AD 400–700) and Little Ice Age (AD 1400–1800) appeared as decreased pollen influxes. The signal for human modification of the landscape first appeared at ~AD 1550–1650 as increases in Ambrosia (ragweed) and Poaceae (grasses) from possible Indigenous agriculture. The signal of European settler landscape modification appeared at ~AD 1770 as the beginning of a steep, “classic” Ambrosia rise. It intensified over the subsequent 250 years as further increases in non-arboreal pollen taxa and early successional Acer (maple) species. Microcharcoal analysis showed that fire was a re-occurring event in the sugar maple-basswood domain, but had little impact on forest composition.

Funder

Fonds de recherche du Québec – Nature et technologies (FRQNT) Nouveaux chercheurs

canada foundation for innovation

Natural Sciences and Engineering Research Council (NSERC) Discovery Grant

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3