Validating a continental European charcoal calibration dataset

Author:

Adolf Carole12ORCID,Doyon Fabienne1,Klimmek Fabian1,Tinner Willy12

Affiliation:

1. Institute of Plant Sciences, University of Bern, Switzerland

2. Oeschger Centre for Climate Change Research, University of Bern, Switzerland

Abstract

Large-scale training sets enabling quantitative reconstructions of past fire parameters are needed to better assess potential effects of increased fire hazard under global warming conditions. The aim of this article is to validate recently developed continental regression equations for the reconstruction of fire number, intensity and size. These transfer functions were built by linking satellite data and charcoal collected in annually sampled sediment traps. We apply these European regression equations to four annually layered lakes located on a North–South gradient in Europe. Down-core annual microscopic charcoal (MIC) and macroscopic charcoal (MAC) influx values were compared with satellite-derived time series of fire number, fire intensity and area burned. Results show that the match between predicted and observed values improves when the overall mean and median of sampled years (12 and 9 years) are considered. Especially, the comparisons of median values show a very good agreement between charcoal-inferred and satellite-observed fire-regime parameters. MIC-based predictions underestimate the variability of the observed fire parameters and MAC-based predictions overestimate it. Our results imply that median values of the fire parameters can be reconstructed well by using MIC and MAC, while it is more difficult to infer the variability of fire-regime parameters. However, when MIC- and MAC-based predictions are pooled together, the fit between observed and predicted values increases for both medians and variability. This finding suggests that MIC and MAC are complementary proxies, thus best sedimentary fire reconstructions may be achieved when they are used together. We conclude that sediment traps can be used for the construction of continental-scale training sets and that their results can be applied to Holocene sedimentary charcoal sequences.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3