Centennial-scale variations in diatom productivity off Peru over the last 3000 years

Author:

Fleury Sophie1,Crosta Xavier1,Schneider Ralph2,Blanz Thomas2,Ther Olivier1,Martinez Philippe1

Affiliation:

1. Université de Bordeaux, CNRS, UMR 5805 EPOC, Pessac, France

2. Institut für Geowissenschaften, Christian-Albrechts Universität-zu-Kiel, Kiel, Germany

Abstract

The Peruvian coastal upwelling is one of the most productive systems in the global ocean, with important impacts on the carbon cycle. Primary productivity there displays strong variations at the interannual to decadal timescales. However, down-core investigations rarely reach sufficient temporal resolution to assess the response of productivity to climatic variations at these timescales beyond the instrumental and historical periods. We here analyzed diatom assemblages, sea-surface temperatures (SSTs), and nitrogen and organic carbon contents on a laminated sediment core from the Peruvian continental shelf to trace variations in regional productivity over the last 3000 years. Our record provides evidence for different climatic and oceanic conditions with more humid and less productive conditions older than 2500 cal. yr BP and drier and more productive conditions younger than 2500 cal. yr BP. The last 2500 years also present much stronger centennial-scale variability with the occurrence of six intervals with higher total diatom abundances and stronger percentages in upwelling-related diatom species, representative of intensified productivity, congruent to lower percentages in benthic diatoms, indicative of reduced rainfall. These six periods were synchronous to intervals of enhanced Walker circulation, suggesting a strong imprint of the Pacific zonal circulation on productivity variations off Peru. Our record also demonstrates that SSTs did not vary in phase with productivity, arguing against the idea of regional SSTs controlled by the upwelling intensity, but were rather in agreement to SST records off southern Chile, suggesting that Peruvian SST variations were largely controlled by oceanic currents at southern high latitudes.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3