Modeled dispersal patterns for wood and grass charcoal are different: Implications for paleofire reconstruction

Author:

Vachula Richard S1ORCID,Rehn Emma23ORCID

Affiliation:

1. Department of Geosciences, Auburn University, USA

2. College of Arts, Society and Education, James Cook University, Australia

3. ARC Centre of Excellence for Australian Biodiversity and Heritage, James Cook University, Australia

Abstract

Sedimentary charcoal records provide useful perspectives on the long-term controls and behavior of fire in the Earth System. However, a comprehensive understanding of the nuances, biases, and limitations of charcoal as a fire proxy is necessary for reliable paleofire interpretations. Here, we use a charcoal dispersal model to answer the following questions: (1) How does the dispersal of wood and grass charcoal particles differ? (2) Do traditional conceptual models of charcoal dispersal reliably characterize grass charcoal dispersal? We find that small differences in shape (length:width (L:W)) and density of grass and wood charcoal can cause substantial differences in particle dispersal and source area. Whereas the modeled dispersal of wood charcoal shows a localized deposition signal which decays with distance, grass charcoal shows more diffuse deposition lacking a localized center (for both >125 µm and >60 µm). Although paleofire research has typically not distinguished between fuel types when interpreting source area, we show that the dispersal of charcoal derived from different fuels is unlikely to be uniform. Because differences in localization, production, and preservation could bias aggregate charcoal accumulation, caution should be taken when interpreting wood and grass-derived charcoal particles preserved in the same record. Additionally, we propose an alternative, dual background conceptual model of grass charcoal dispersal, as the traditional, two-component (peak and background) conceptual model does not accurately characterize the modeled dispersal of grass charcoal. Lastly, this mismatch of conceptualizations of dispersal mechanics implies that grass charcoal may not fit the criteria necessary for peak analysis techniques.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3