The influence of bedrock weathering on the response of drainage basins and associated alluvial fans to Holocene climates, San Bernardino Mountains, California, USA

Author:

Eppes Martha Cary1,McFadden Leslie2

Affiliation:

1. Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA,

2. Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque NM 87110, USA

Abstract

The primary factors that control alluvial fan evolution still remain in question particularly for the Holocene. Holocene centennial- and millennial-scale climate fluctuations are relatively subtle and more frequent than those of glacial/interglacial transitions, therefore intrinsic factors such as rock type or basin size are hypothesized to moderate significantly the influence of Holocene climate and climate change on alluvial fan processes. Here, we examine variability in styles and rates of alluvial fan aggradation along a single mountain front that is characterized by basins of varying size and rock type (carbonate versus granite). Basin rock type is more closely correlated to variability in the episodic nature and magnitude of alluvial fan aggradation than is basin area. Bedrock physical and chemical weathering properties control sediment delivery to the piedmont and thus influence alluvial fan aggradation. We suggest that the particle size of grus produced by weathering of granitic rocks fosters sediment mobilization and alluvial fan aggradation during episodes of increased precipitation in the Holocene. Sediment mobilization during wetter climates is also possibly enhanced by drought-related fires and vegetation loss that occurred during preceding drier periods. In contrast, carbonate outcrops weather to both dissolved materials and clastic sediment and relatively rapid cementation of talus precludes its transportation out onto the piedmont under almost all Holocene climatic conditions. If the scale of past Holocene climate change is the closest analogy to current global change, this study documents some mechanisms by which different rock types can exert dramatically different effects on landscape response to those changes.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3