Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set

Author:

Hogg Alan1,Lowe David J.1,Palmer Jonathan2,Boswijk Gretel3,Ramsey Christopher Bronk4

Affiliation:

1. University of Waikato, New Zealand

2. Gondwana Tree-Ring Laboratory, New Zealand

3. University of Auckland, New Zealand

4. Oxford Radiocarbon Accelerator Unit, UK

Abstract

Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of ad 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision 14C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium ad subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (ad 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China ( c. ad 186) are both untenable. However, although their conclusion of a zero north–south 14C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (ad 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ2 data, obtained from a 14C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual 14C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees).

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3