Multiple lipid biomarkers record organic matter sources and paleoenvironmental changes in the East China Sea coast over the past 160 years

Author:

Chen Lilei123ORCID,Li Feng1,Liu Jian12,He Xingliang1

Affiliation:

1. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao, People’s Republic of China

2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China

3. Deep-sea Research Center, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People’s Republic of China

Abstract

The use of lipid biomarkers as paleoenvironmental proxies relies on an accurate assessment of their organic matter (OM) sources. In this study, we analyzed multiple lipids in core sediments recovered from the Zhejiang–Fujian coastal mud area to provide a 160-year record of OM input to the East China Sea (ECS) coastal sediments and to reconstruct paleoenvironmental conditions over this interval. The molecular composition of the samples was characterized by a mixture of natural lipids, particularly those derived from terrestrial vascular plants, marine/riverine plankton and macrophytes, and bacteria. The sources of some lipid components were ambiguous/mixed as they were potentially derived from multiple precursor organisms and because of limitations associated with modern survey techniques. There is evidence that early diagenesis caused the preferential degradation of labile aquatic lipids and that the degradation of terrestrial lipids was more severe when subjected to complex horizontal–vertical transportation processes associated with deposition, resuspension, and redeposition. These processes may have led to an enhanced terrestrial OM signal in the normal ( n)-alkane and n-alkanol records, which is at odds with, for example, those of the n-fatty acids, hopanoids, steranes, and sterols, which suggest a dominant marine OM source. Furthermore, we conclude that the occurrence of multiple sources, selective diagenesis, and test error has led to the distortion of redox and maturity indicators based on evidence from pristane-to-phytane (Pr/Ph) ratios and sterane/hopane indices in century scale. Overall, the phytol record suggests an increase in productivity after the early 20th century. Correspondingly, the diatom lipid biomarker records (based on C25 highly branched isoprenoid alkenes and C18:1ω9 fatty acids) reveal a fluctuating but overall increasing diatom productivity after the early 20th century, which coincides with a decreased proportion of the contribution from diatoms relative to that of total phytoplankton. This is believed to correspond to natural environmental changes, as well as anthropogenic impact.

Funder

China Geological Survey

national natural science foundation of china-shandong joint fund for marine science research centers

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shandong Provincial Postdoctoral Innovation Project Special Funding Project

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3