Metabolic implications of axonal demyelination and its consequences for synchronized network activity: An in silico and in vitro study

Author:

Gerevich Zoltan1,Kovács Richard1,Liotta Agustin123ORCID,Hasam-Henderson Luisa A1,Weh Ludwig4ORCID,Wallach Iwona35ORCID,Berndt Nikolaus35ORCID

Affiliation:

1. Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

2. Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

3. Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany

4. Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

5. Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

Abstract

Myelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation. While numerous studies are devoted to the effects of demyelination on conduction velocity, the metabolic effects and the consequences for network synchronization have not been investigated. Here we present a unifying computational model for electrophysiology and metabolism of the myelinated axon. The computational model suggested that demyelination not only decreases the AP speed but AP propagation in demyelinated axons requires compensatory processes like mitochondrial mass increase and a switch from saltatory to continuous propagation to rescue axon functionality at the cost of reduced AP propagation speed and increased energy expenditure. Indeed, these predictions were proven to be true in a culture model of demyelination where the pharmacologically-induced loss of myelin was associated with increased oxygen consumption rates, and a significant broadening of bandwidth as well as a decrease in the power of gamma oscillations.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3