Affiliation:
1. University of Wisconsin-Madison, USA
2. University of Vienna, Austria
Abstract
The use of artificial intelligence-based algorithms for the curation of news content by social media platforms like Facebook and Twitter has upended the gatekeeping role long held by traditional news outlets. This has caused some US policymakers to argue that platforms are skewing news diets against them, and such claims are beginning to take hold among some voters. In a nationally representative survey experiment, we explore whether traditional models of media bias perceptions extend to beliefs about algorithmic news bias. We find that partisan cues effectively shape individuals’ attitudes about algorithmic news bias but have asymmetrical effects. Specifically, whereas in-group directional partisan cues stimulate bias perceptions for members of both parties, Democrats, but not Republicans, also respond to out-group cues. We conclude with a discussion about the implications for the formation of attitudes about new technologies and the potential for polarization.
Funder
wisconsin alumni research foundation
Subject
Sociology and Political Science,Communication
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献