The improvement of stress correction in post-necking tension of cylindrical specimen

Author:

Chen Junfu12ORCID,Guan Zhiping12,Ma Pinkui12,Li Zhigang12,Meng Xiangrui12

Affiliation:

1. Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, China

2. International Center of Future Science, Jilin University, Changchun, China

Abstract

In post-necking tension of cylindrical specimen, the stress corrections based on the current analytical models have relatively significant errors at large strains. In this study, the prediction capability of these models involving Bridgman model, Siebel model and Chen model is evaluated by performing a series of finite element simulations of uniaxial tension of cylindrical specimen with different hardening exponents varied from 0.05 to 0.3. Numerical analysis of stress and strain distributions on the necking cross section indicates that the considerable errors of the corrected stresses corresponding to large strains might be mainly attributed to the assumption of uniform strain distribution on the necking cross section in these analytical models. The modification strategies of these models are presented in order to improve their prediction accuracy of post-necking stresses, taking geometrical configuration of neck and material properties into consideration. Accordingly, the modification formulas are proposed based on simulation results, involving the radius of cross section of neck and the hardening exponent. Finally, these formulas are used to correct the stresses in the post-necking tension of Q345 cylindrical specimen, which are compared with the stresses identified through inverse method. The results indicate that the modified models significantly improve the prediction accuracy of post-necking stresses at large strains.

Funder

The National Key Research and Development Program of China

The science and technology development program of Jilin Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3