Thermoelastic transient memory response analysis of non-localized nano-piezoelectric plates based on Moore-Gibson-Thompson thermoelasticity theory

Author:

Shi Zhiwei1ORCID,Li Le1,He Tianhu1

Affiliation:

1. School of Science, Lanzhou University of Technology, Lanzhou, China

Abstract

With their abilities to induce electric charge, stress or deformation in response to external forces as well as the ease of fabrication, design flexibility and excellent electromechanical properties, piezoelectric materials have been widely used in actuators, sensors and even in nano/micro-electro-mechanical systems. With the rapid advancement of nano/micro-technology, from the perspective of theoretical analysis, the priority is to develop applicable models to describe the piezoelectric-thermoelastic responses of piezoelectric nano/micro-structures suffering transient heat conduction by taking the size-dependent effect and the memory-dependent effect into consideration. In this work, a new model based on the existing piezoelectric-thermoelastic model is established by introducing the nonlocality into the constitutive equations and the memory-dependent derivative into Moore-Gibson-Thompson (MGT) heat conduction equation respectively. Then, this new model is applied to investigating the dynamic responses of a piezoelectric nanoplate subjected to thermal shock. The corresponding governing equations are formulated and then solved by Laplace transform and its numerical inversion. In calculation, the influences of the time delay factor and the kernel function of MDD and the non-local parameter on the thermal, electric and elastic fields in the piezoelectric nanoplate are examined. Meanwhile, the predictions of transient response among different thermoelastic models are compared. The numerical results are illustrated graphically and discussed in detail. The obtained results show that MDD has a significant effect on the transient response, where the effect of the kernel function is more pronounced. This work may provide a theoretical reference for strength design, thermal protection and thermal processing strategies for piezoelectric nanodevices.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3