Dynamic VAD simulations: Performing accurate simulations of ventricular assist devices in interaction with the cardiovascular system

Author:

Crone Vincenz1ORCID,Hahne Mario1,Knüppel Finn1,Wurm Frank-Hendrik1,Torner Benjamin1ORCID

Affiliation:

1. Institute of Turbomachinery, University of Rostock, Rostock, Germany

Abstract

Medical advancements, particularly in ventricular assist devices (VADs), have notably advanced heart failure (HF) treatment, improving patient outcomes. However, challenges such as adverse events (strokes, bleeding and thrombosis) persist. Computational fluid dynamics (CFD) simulations are instrumental in understanding VAD flow dynamics and the associated flow-induced adverse events resulting from non-physiological flow conditions in the VAD. This study aims to validate critical CFD simulation parameters for accurate VAD simulations interacting with the cardiovascular system, building upon the groundwork laid by Hahne et al. A bidirectional coupling technique was used to model dynamic (pulsatile) flow conditions of the VAD CFD interacting with the cardiovascular system. Mesh size, time steps and simulation method (URANS, LES) were systematically varied to evaluate their impact on the dynamic pump performance (dynamic [Formula: see text] curve) of the HeartMate 3, aiming to find the optimal simulation configuration for accurately reproduce the dynamic [Formula: see text] curve. The new Overlapping Ratio (OR) method was developed and applied to quantify dynamic [Formula: see text] curves. In particular, mesh and time step sizes were found to have the greatest influence on the calculated pump performance. Therefore, small time steps and large mesh sizes are recommended to obtain accurate dynamic [Formula: see text] curves. On the other hand, the influence of the simulation method was not significant in this study. This study contributes to advancing VAD simulations, ultimately enhancing clinical efficacy and patient outcomes.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3