Effects of Blood Flow Pulse Frequency on Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator

Author:

Fiore G.B.1,Pennati G.1,Inzoli F.2,Mastrantonio F.3,Galavotti D.3

Affiliation:

1. Dipartimento di Bioingegneria, Politecnico di Milano, and CeBITeC, Politecnico di Milano and IRCCS San Raffaele, Milano

2. Dipartimento di Energetica, Politecnico di Milano, and CeBITeC, Politecnico di Milano and IRCCS San Raffaele, Milano

3. DIDECO S.p.A., Mirandola (MO) - Italy

Abstract

The clinical advantages achievable through pulsatile blood perfusion during cardio-pulmonary bypass have recently suggested the design of new pulsatile systems for extracorporeal circulation. Still it is not clear whether current commercial membrane oxygenators could be adopted with such systems, since their behaviour with pulsatile perfusion has not been satisfactorily documented yet. In a previous paper, we assessed that pulsatile perfusion of a widely used hollow fibre oxygenator (Sorin® Monolyth) at 60 bpm provides more time-consistent oxygen transfer than steady perfusion. The present work is aimed to evaluate how the pulse frequency influences the gas transfer performance of the same device. The oxygenator was subjected to in vitro trials using a roller pump with pulsatile module (Stöckert Instrumente®) to generate pulsed flow. Four different pulse frequencies (45, 60, 75 and 90 bpm) were investigated at a fixed blood flow rate (4.0 l/min). The experiments lasting six hours were carried out using bovine blood with inlet conditions according to AAMI standards requirements. Blood samples were withdrawn every hour and O2 and CO2 transfer rates were evaluated. The experimental findings confirm that with pulsatile blood flow no time decay take place during prolonged perfusion. Moreover, when pulse frequency increases, transition levels occur for both O2 and CO2. Over these thresholds gas transfer rates display significant increases (p < 0.05), though of little magnitude (up to 2.5% for oxygen over 60 bpm; up to 3.7% for carbon dioxide over 75 bpm).

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3