Comparison of hydroxyapatite and honeycomb micro-structure in bone tissue engineering using electrospun beads-on-string fibers

Author:

Rivoallan Nicolas12ORCID,Mueller Marc2,Baudequin Timothée1ORCID,Vigneron Pascale1,Hébraud Anne3,Jellali Rachid1,Dermigny Quentin1,Le Goff Anne1,Schlatter Guy3,Glasmacher Birgit2,Legallais Cécile1

Affiliation:

1. Université de technologie de Compiègne, CNRS, BMBI (Biomechanics and Bioengineering), Centre de recherche Royallieu—CS 60 319 – 60 203, Compiègne Cedex, France

2. Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany

3. ICPEES UMR 7515, Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, CNRS, Université́de Strasbourg, Strasbourg, France

Abstract

Thick honeycomb-like electrospun scaffold with nanoparticles of hydroxyapatite (nHA) recently demonstrated its potential to promote proliferation and differentiation of a murine embryonic cell line (C3H10T1/2) to osteoblasts. In order to distinguish the respective effects of the structure and the composition on cell differentiation, beads-on-string fibers were used to manufacture thick honeycomb-like scaffolds without nHA. Mechanical and biological impacts of those beads-on string fibers were evaluated. Uniaxial tensile test showed that beads-on-string fibers decreased the Young Modulus and maximal stress but kept them appropriate for tissue engineering. C3H10T1/2 were seeded and cultured for 6 days on the scaffolds without any growth factors. Viability assays revealed the biocompatibility of the beads-on-string scaffolds, with adequate cells-materials interactions observed by confocal microscopy. Alkaline phosphatase staining was performed at day 6 in order to compare the early differentiation of cells to bone fate. The measure of stained area and intensity confirmed the beneficial effect of both honeycomb structure and nHA, independently. Finally, we showed that honeycomb-like electrospun scaffolds could be relevant candidates for promoting bone fate to cells in the absence of nHA. It offers an easier and faster manufacture process, in particular in bone-interface tissue engineering, permitting to avoid the dispersion of nHA and their interaction with the other cells.

Funder

Ontario Ministry of Research, Innovation and Science

Labex MS2T

Deutscher Akademischer Austauschdienst France

Agence Nationale de la Recherche

Graduierten Akademie LUH

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3