Biocompatibility and Immunology in the Encapsulation of Islets of Langerhans (Bioartificial Pancreas)

Author:

Zekorn T.D.C.1,Horcher A.1,Mellert J.2,Siebers U.1,Altug T.3,Emre A.3,Hahn H-J.4,Federlin K.1

Affiliation:

1. Medizinische Klinik III und Poliklinik, Justus Liebig-Universität, Giessen

2. Chirurgische Klinik der Universität, Rostock

3. Institute for Experimental Medical Research (DETAM), University of Instanbul, Instabul - Turkey

4. Institut für Diabetes der Universität Greifswald, Karlsburg - Germany

Abstract

Successful transplantation of encapsulated islets (bioartificial pancreas) would circumvent problems of islet availability and rejection in the treatment of insulin-dependent diabetes with biological organ replacement. Alginates are widely used as a hydrogel matrix or membrane for immunoprotected transplantation. A major problem in the use of diffusion-based devices is the biocompatibility of the material used. The foreign body reaction after implantation of empty microcapsules into different compartments in rats, dogs and pigs is evaluated in this article. However, biocompatibility of the bioartificial pancreas has three different aspects: reaction of the entrapped islet to the encapsulation technique and material; reaction of the recipient against the incorporated device (= foreign body reaction); and finally the reaction of the recipient against the encapsulated islet (= immunology of bioartificial pancreas). It is obvious from different experiments that even if foreign body reactions (reactions against material) are almost abolished the recipient may react against material released from the encapsulated islet. In conclusion, transplantation of encapsulated islets induces various morphological reactions (i.e. inflammation and fibrosis) as a result of a variety of donor and recipient related factors. Therefore, the use of an adequate animal model that reflects the human situation is essential for progress in the development of a bioartificial pancreas.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3