Biomechanical effects of iatrogenic muscle-ligaments complex damage on adjacent segments following posterior lumbar interbody fusion: A finite element analysis

Author:

Wei Wei12,Wang Tianhao2,Li Jian1,Liu Jianheng2,Mao Keya2,Pan Chun’ang34,Li Hui34,Zhao Yongfei2ORCID

Affiliation:

1. Department of Orthopaedics Ⅱ, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China

2. Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China

3. Beijing Engineering and Technology Research Center for Medical Endoplants, Beijing, China

4. Beijing Engineering Laboratory of Functional Medical Materials and Instruments, Beijing, China

Abstract

Objective: To analyze the biomechanical effects of proximal iatrogenic muscle-ligaments complex (MLC) damage on adjacent segments following posterior lumbar interbody fusion (PLIF) by finite element (FE) analysis. Methods: The multifidus muscle force was loaded in the validated intact lumbosacral finite element model. Based on whether undergoing PLIF or the proximal MLC damage, three models were established. Range of motion (ROM) and the maximum von Mises (VM) stress of adjacent segments were analyzed, as well as the average muscle force and work capacity in four loading directions. Results: PLIF results in significant changes in ROM and stress. ROM changed significantly in the upper adjacent segment, the PLIF model changed the most in extension, and the largest change in the lower adjacent segment occurred after MLC damage. The VM stress of the upper adjacent segment occurred in extension of the PLIF model, and that of the lower adjacent segment occurred in rotation after MLC damage. In flexion, ROM, and stress of the damaged MLC fusion model were significantly increased compared with the normal and PLIF models, there was a stepwise amplification. The average muscle force comparison of three models was 5.8530, 12.3185, and 13.4670 N, respectively. The total work capacity comparison was close to that of muscle force. Conclusion: PLIF results in increased ROM and the VM stress of adjacent segments, the proximal MLC damage will aggravate this change. This may increase the risk of ASD and chronic low back pain. Preserving the proximal MLC reduces the biomechanical effects on adjacent segments.

Funder

Foundation Enhancement Program of CMC Science and Technology Commission

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3