Evaluation of a Hybrid Artificial Liver Module with Liver Lobule-Like Structure in Rats with Liver Failure

Author:

Aoki K.1,Mizumoto H.1,Nakazawa K.2,Funatsu K.1,Kajiwara T.1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka - Japan

2. Department of Chemical Processes and Environments, Faculty of Environmental Engineering, The University of Kitakyushu, Fukuoka - Japan

Abstract

We studied the recovery of rats with fulminant hepatic failure (FHF) by treating them with our original hybrid artificial liver support system (HALSS). We developed an original artificial liver module having a liver lobule-like structure (LLS). This module consists of many hollow fibers regularly arranged in close proximity and hepatocyte aggregates (organoids) induced into the extra capillary space of the module by centrifugal force. The LLS module can express some liver specific functions at high levels and maintain them for several months in vitro. In this study, we evaluated the efficacy of our LLS-HALSS by using rats with FHF induced by a method that combined partial hepatectomy with hepatic ischemia. In the animal experiments, blood ammonia levels rapidly increased in the control group (sham-HALSS group). These rats died during or immediately after application of the sham-HALLS. On the other hand, in the LLS module application group (LLS-control group), the increase in blood ammonia was completely suppressed and all rats recovered. Blood constituents at 4 weeks after application were at normal levels, and the weight of the liver was the same as that of a normal rat. These results indicate that HALSS may be useful for treating liver failure patients until liver transplantation can be performed or until regeneration of the native liver occurs. (Int J Artif Organs 2008; 31: 55–61)

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3