Evaluation of the Direct Toxicity of Trioctyltrimellitate (TOTM), di(2-ethylhexyl) Phthalate (DEHP) and their Hydrolysis Products on Isolated Rat Hepatocytes

Author:

Kambia K.1,Dine T.1,Gressier B.1,Dupin-Spriet T.1,Luyckx M.1,Brunet C.1

Affiliation:

1. Laboratoire de Pharmacologie, Pharmacocinétique et Pharmacie clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Lille cedex - France

Abstract

Plasticizers are added to polyvinyl chloride (PVC) to confer flexibility to the polymer. Di-(2-ethylhexyl) phthalate (DEHP) is the most commonly used of them. However, due to its non covalent bond to the PVC, DEHP tends to vaporize easily. A significant exposure has been recorded in dialyzed patients since medical tubings. Most animal species metabolize DEHP rapidly into mono-ethylhexyl phthalate (MEHP) and 2-ethylhexanol (2-EH). Because of the suspected toxicity of DEHP, an alternative plasticizer, trioctyltrimellitate (TOTM) has aroused increasing interest. The aim of this study was to determine on isolated rat hepatocytes in vitro, the direct hepatotoxic potential of both DEHP and TOTM and their hydrolytic products. To evaluate the possible toxic liver risk resulting from exposure to DEHP and TOTM, isolated rat hepatocytes were incubated with either DEHP, TOTM, MEHP or their common metabolite (2-EH) for 3 hours. Cell viability was periodically estimated thanks to trypan blue tests (15 - 180 min). The activity of lactate dehydrogenase (LDH) was also monitored (1h, 2h, 3h). The results obtained with trypan blue test and with direct LDH activity measurements, were satisfactorily correlated. Hepatocytes treated with both plasticizers and metabolites on the one hand, and the controls (untreated suspension) on the other hand, showed important differences as for cell viability. The acute toxicity on hepatocytes is mainly due to MEHP. Among DEHP, TOTM, MEHP, 2-EH and after intraperitoneal injection of those compounds, only DEHP and MEHP were able to induce a significant hydrogen peroxide (H2O2) production by the rat hepatocytes. These observations enable us to confirm the hypothesis according to which DEHP and MEHP cause an imbalance between the synthesis and the degradation of H2O2. Our results suggest a short-term in vitro cytotoxicity of MEHP. Even if trypan blue and LDH tests offered good results and were easily branded, further assays as well as MTT-tests should performed in order to confirm the cytotoxicity of the compounds tested.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3