Quantitative investigation of platelet aggregation under high shear force for anti-platelet aggregation in vitro tests

Author:

Oota-Ishigaki Akiko1ORCID,Maruyama Osamu1,Sakota Daisuke1ORCID,Kosaka Ryo1,Hijikata Wataru2,Nishida Masahiro1

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan

2. Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

Abstract

Blood pumps are often used for hemofiltration in patients with renal failure. To design effective centrifugal blood pumps for hemofiltration, it is important to suppress clogging caused by platelet aggregation. However, the optimal conditions for conducting anti-platelet aggregation tests in vitro have not yet been established. This study aimed to quantify the effect of the shear loading value and shear loading time on platelet aggregation and determine the optimal conditions for anti-platelet aggregation testing in vitro. To quantitatively evaluate platelet aggregation in terms of the negative logarithm-platelet aggregation threshold index (NL-PATI), which reflects the propensity of residual platelets to aggregate after shear loading, the following parameters were examined: blood collection method (collected from porcine vein using a syringe or collected from a slaughterhouse), type of anticoagulant (sodium citrate or heparin), shear rate, and shear time. The results showed that platelet aggregation in porcine blood increased under a high shear load applied at shear rates of approximately 20,000 s−1 or higher for 30 s. Platelet aggregation propensity was 2–3 times higher in heparin-anticoagulated blood than in sodium citrate-anticoagulated blood. Moreover, platelet aggregation was 1.5–2 times more in blood collected from the slaughterhouse than in syringe-collected blood. Testing with an integrated shear time of 30 s or less in relation to the total blood volume may be effective for conducting in vitro circulation experiments using hemofiltration blood pumps. The conditions established in this study may be useful for hemocompatibility testing of cardiovascular devices based on NL-PATI.

Funder

Scientific Research of Japan

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3