Synaptic and complement markers in extracellular vesicles in multiple sclerosis

Author:

Bhargava Pavan1ORCID,Nogueras-Ortiz Carlos2,Kim Sol1,Delgado-Peraza Francheska2,Calabresi Peter A1,Kapogiannis Dimitrios3

Affiliation:

1. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

2. Laboratory of Clinical Investigation, National Institutes of Aging, Baltimore, MD, USA

3. Laboratory of Clinical Investigation, National Institutes of Aging, Baltimore, MD, USA/Biomedical Research Center, National Institute on Aging, National Institute of Health, Baltimore, MD, USA/ Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

Background: Synaptic loss is a feature of multiple sclerosis pathology that can be seen even in normal-appearing gray matter. Opsonization of synapses with complement components may underlie pathologic synapse loss. Objective: We sought to determine whether circulating neuronal-enriched and astrocytic-enriched extracellular vesicles (NEVs and AEVs) provide biomarkers reflecting complement-mediated synaptic loss in multiple sclerosis. Methods: From plasma of 61 people with multiple sclerosis (46 relapsing–remitting multiple sclerosis (RRMS) and 15 progressive MS) and 31 healthy controls, we immunocaptured L1CAM + NEVs and GLAST + AEVs. We measured pre- and post-synaptic proteins synaptopodin and synaptophysin in NEVs and complement components (C1q, C3, C3b/iC3b, C4, C5, C5a, C9, Factor B, and Factor H) in AEVs, total circulating EVs, and neat plasma. Results: We found lower levels of NEV synaptopodin and synaptophysin in MS compared to controls ( p < 0.0001 for both). In AEVs, we found higher levels of multiple complement cascade components in people with MS compared to controls; these differences were not noted in total EVs or neat plasma. Strikingly, there were strong inverse correlations between NEV synaptic proteins and multiple AEV complement components in MS, but not in controls. Conclusion: Circulating EVs could identify synaptic loss in MS and suggest a link between astrocytic complement production and synaptic loss.

Funder

Myelin Repair Foundation

Conrad N. Hilton Foundation

National Multiple Sclerosis Society

national institute on aging

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3