Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-β1b

Author:

Alexander JS1,Harris MK2,Wells SR1,Mills G.1,Chalamidas K.2,Ganta VC1,McGee J.2,Jennings MH1,Gonzalez-Toledo E.3,Minagar A.4

Affiliation:

1. Departments of Molecular and Cellular Physiology, LSUHSC-Shreveport, LA 71130-3932, USA

2. Department of Neurology, LSUHSC-Shreveport, LA 71130-3932, USA

3. Radiology, LSUHSC-Shreveport, LA 71130-3932, USA

4. Department of Neurology, LSUHSC-Shreveport, LA 71130-3932, USA,

Abstract

Background: Interferon-β1b (IFN-β1b), an effective treatment for multiple sclerosis (MS), lessens disease severity in MS patients. However, the mechanisms of its immunoregulatory and anti-inflammatory effects in MS remain only partially understood. Matrix metalloproteinases (MMP) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are involved in blood brain barrier disruption and formation of MS lesions. Th1/Th17 cytokines e.g. interleukins IL-12p40, IL-17, and IL-23, are associated with MS disease activity and are significant players in pathogenesis of MS. Objective: During a 1-year prospective study, we serially measured serum MMP-8, MMP-9, TIMP-1, IL-12p40, IL-17, and IL-23 in 24 patients with relapsing—remitting MS. We compared the results to clinical course and to brain magnetic resonance imaging. IFN-β1b decreased serum MMP-8 and MMP-9 (not TIMP-1). Results: The sustained treatment with IFN-β1b attenuated the pro-inflammatory environment by significantly reducing the serum IL-12p40, IL-23, and showed a trend for decreasing IL-17. Decreased serum MMP-8, MMP-9, IL-12 and IL-23 levels were correlated with a decrease in the number of contrast-enhanced T2-weighted lesions. Conclusion: Early treatment of MS with IFN-β1b may stabilize clinical disease by attenuating levels of inflammatory cytokines and MMPs. Serial measurement of inflammatory mediators may serve as sensitive markers to gauge therapeutic responses to IFN-β1b during the first year of treatment.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3