High-resolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis

Author:

Steenwijk Martijn D1,Vrenken Hugo1,Jonkman Laura E2,Daams Marita3,Geurts Jeroen JG2,Barkhof Frederik4,Pouwels Petra JW5

Affiliation:

1. Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands/Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands

2. Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands

3. Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands/Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands

4. Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands

5. Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands

Abstract

Background: Gray matter (GM) pathology has high clinical relevance in multiple sclerosis (MS), but conventional magnetic resonance imaging (MRI) is insufficiently sensitive to visualize the rather subtle damage. Objective: To investigate whether high spatial resolution T1-relaxation time (T1-RT) measurements can detect changes in the normal-appearing GM of patients with long-standing MS and whether these changes are associated with physical and cognitive impairment. Methods: High spatial resolution (1.05 × 1.05 × 1.2 mm3) T1-RT measurements were performed at 3 T in 156 long-standing MS patients and 54 healthy controls. T1-RT histogram parameters in several regions were analyzed to investigate group differences. Stepwise linear regression analyses were used to assess the relation of T1-RT with physical and cognitive impairment. Results: In both thalamus and cortex, T1-RT histogram skewness was higher in patients than controls. In the cortex, this was driven by the frontal and temporal lobes. No differences were found in other GM histogram parameters. Cortical skewness, thalamus volume, and average white matter (WM) lesion T1-RT emerged as the strongest predictors for cognitive performance (adjusted R2 = 0.39). Conclusion: Subtle GM damage was present in the cortex and thalamus of MS patients, as indicated by increased T1-RT skewness. Increased cortical skewness emerged as an independent predictor of cognitive dysfunction.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3