More efficient processes for creating automated essay scoring frameworks: A demonstration of two algorithms

Author:

Shin Jinnie1ORCID,Gierl Mark J.1

Affiliation:

1. University of Alberta, Canada

Abstract

Automated essay scoring (AES) has emerged as a secondary or as a sole marker for many high-stakes educational assessments, in native and non-native testing, owing to remarkable advances in feature engineering using natural language processing, machine learning, and deep-neural algorithms. The purpose of this study is to compare the effectiveness and the performance of two AES frameworks, each based on machine learning with deep language features, or complex language features, and deep neural algorithms. More specifically, support vector machines (SVMs) in conjunction with Coh-Metrix features were used for a traditional AES model development, and the convolutional neural networks (CNNs) approach was used for more contemporary deep-neural model development. Then, the strengths and weaknesses of the traditional and contemporary models under different circumstances (e.g., types of the rubric, length of the essay, and the essay type) were tested. The results were evaluated using the quadratic weighted kappa (QWK) score and compared with the agreement between the human raters. The results indicated that the CNNs model performs better, meaning that it produced more comparable results to the human raters than the Coh-Metrix + SVMs model. Moreover, the CNNs model also achieved state-of-the-art performance in most of the essay sets with a high average QWK score.

Publisher

SAGE Publications

Subject

Linguistics and Language,Social Sciences (miscellaneous),Language and Linguistics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3