In Vivo Antifatigue Activity of Spirulina Peptides Achieved by Their Antioxidant Activity and by Acting on Fat Metabolism Pathway in Mice

Author:

Chen Yuhao1ORCID,Wang Feng23,Zhou Jiawei1,Niu Tingting1,Xuan Rongrong4,Chen Haimin1,Wu Wei1

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Zhejiang, P. R. China

2. Department of Laboratory Medicine, Ningbo Medical Center, Lihuili Hospital, Zhejiang, P. R. China

3. Department of Laboratory Medicine, Taipei Medical University, Ningbo Medical Center, Zhejiang, P. R. China

4. Affiliated Hospital of Medical College, Ningbo University, Zhejiang, P. R. China

Abstract

Spirulina are multicellular and filamentous cyanobacteria that have achieved considerable popularity in the health sector, food industry, and aquaculture. In the present study, we aimed to evaluate the antifatigue effects of Spirulina-derived peptides on Institute for Cancer Research mice and explore the association between antifatigue activity and fat metabolism involving the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. We extracted the peptides from Spirulina by enzymatic hydrolysis and ultrafiltration. The mice were orally administered with Spirulina peptides (0.125, 0.5, and 2 mg/g bw/day) daily for 4 weeks. We found that Spirulina peptides, especially the high-dose group, significantly prolonged the swimming time by 126.1%, increased the activities of antioxidant enzymes, and decreased the content of malondialdehyde by 60.2% compared with the glutathione (GSH) group. The levels of some indicators of exercise fatigue, including lactic dehydrogenase, blood lactic acid, and creatine phosphokinase, were reduced. In the high-dose group, these indicators were reduced by 40.7%, 22.3%, and 11.3% compared with the GSH group. Spirulina peptides did not excessively consume blood sugar or glycogen in the liver and muscle to produce energy. However, the triglyceride level was reduced, and the level of free fatty acids was increased. Besides, the proteins in the AMPK signaling pathway were activated. Taken together, these findings indicated that Spirulina peptides could effectively alleviate physical fatigue by reducing the production of lactic acid and improving antioxidant capacity. Spirulina peptides also helped increase the energy resources by activating the AMPK signaling pathway to utilize fat metabolism.

Funder

China Agriculture Research System

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

National Key R&D Program of China

K.C. Wong Magna

Medical Science and Technology of Zhejiang Province

Ningbo Programs for Science and Technology Development

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3