Cellular effects of diquat dibromide exposure: Interference with Wnt signaling and cytoskeletal development

Author:

Jalil Amaris S1,Reddy Sneha B1,Plautz Carol Zygar1ORCID

Affiliation:

1. Department of Biology, Shepherd University, Shepherdstown, WV, USA

Abstract

The herbicidal action of diquat dibromide (DD) on plant cells is due primarily to the initiation of reactive oxygen species (ROS) formation, lipoperoxidation, and apoptotic cell death. It has been demonstrated that oxidative stress also occurs in animal cells exposed to high concentrations of DD; however, observations of DD’s effects on animal cells at concentrations below the reported ROS-initiation threshold suggest that some of these effects may not be attributable to ROS-induced cell death. Our results suggest that DD causes disruption of the Wnt pathway, calcium dysregulation, and cytoskeletal damage during development. Using embryos of the pond snail Lymnaea palustris as our model organism, we observed increased mortality, developmental delay and abnormality, altered motility, calcium dysregulation, decreased heart rate, and arrhythmia in embryos exposed to DD. Sperm extracted from adult snails that were exposed to DD exhibit altered motility, increased abundance, and high mortality. Effects were quantified via real-time imaging, heart rate assessment, flow cytometry, and mortality scoring. We propose that there are two models for the mechanism of DD’s action in animal cells: at low concentrations (≤28 µg/L), apoptotic cell death does not occur, but cytoskeletal elements, calcium regulation, and Wnt signaling are compromised, causing irreversible damage in L. palustris embryos; such damage is partially remediated with antioxidants or lithium chloride. At high concentrations of DD (≥44.4 µg/L), calcium dysregulation may be triggered, leading to the establishment of an intracellular positive feedback loop of ROS formation in the mitochondria, calcium release from the endoplasmic reticulum, calcium efflux, and apoptotic cell death. Permanent cellular damage occurring from exposure to sublethal concentrations of this widespread herbicide underscores the importance of research that elucidates the mechanism of DD on nontarget organisms.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectroscopic Analysis of the Binding of Paraquat and Diquat Herbicides to Biosubstrates;International Journal of Environmental Research and Public Health;2021-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3