Development of a machine learning algorithm for fault detection in a cantilever beam

Author:

Kumar Gorai Amit1ORCID,Roy Tarapada2,Mishra Sumeet1

Affiliation:

1. Department of Mining Engineering, National Institute of Technology Rourkela, Rourkela, Orissa, India

2. Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Orissa, India

Abstract

The mechanical properties of a component change with any type of damage such as crack development, generation of holes, bend, excessive wear, and tear. The change in mechanical properties causes the material to behave differently in terms of noise and vibration under different loading conditions. Thus, the present study aims to develop an artificial neural network model using vibration signal data for early fault detection in a cantilever beam. The discrete wavelet transform coefficients of de-noised vibration signals were used for model development. The vibration signal was recorded using the OROS OR35 module for different fault conditions (no fault, notch fault, and hole fault) of a cantilever beam. A feed-forward network was trained using backpropagation to map the input features to output. A total of 603 training datasets (201 datasets for three types of cantilever beam—no fault, notch fault, and hole fault) were used for training, and 201 datasets were used for testing of the model. The testing dataset was recorded for a hole fault cantilever beam specimen. The results indicated that the proposed model predicted the test samples with 78.6% accuracy. To increase the accuracy of prediction, more data need to be used in the model training.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Detection Method for Closed-Loop Control Loop of Water Jet Propulsion Device Based on Convolutional Autoencoder and Support Vector Data Description;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

2. Simulation of Mechanical Component Fault Prediction Model Based on Artificial Neural Network Algorithm;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3