Behavior of cracked Euler–Bernoulli beam and inverse problem for assessing crack severity

Author:

Samir Mohamed Mohamed Soliman Ehab1ORCID

Affiliation:

1. Mechatronics and Robotics Department, Faculty of Engineering, Egyptian Russian University, Badr City, Cairo, Egypt

Abstract

In this present study, natural frequencies of the first two modes of bending vibration for the cracked simply supported Euler–Bernoulli beam is determined using finite element analysis (FEA). FEA natural frequencies for the cracked beam are used to investigate the behavior of the cracked beam and also used in the inverse problem of crack depth detection. Dynamic behavior of the cracked simply supported beam is observed, and it is found that normalized mode shape at crack location has great effect on amount of decreasing of natural frequencies. When normalized mode shape at crack location is increased, then natural frequencies decrease. In this study, pattern of mode shape played a vital role in decreasing or increasing natural frequencies. At the midpoint of the beam, there is largest bending moment in first bending mode and there is nodal point in second bending mode. Harmonic analysis for the cracked simply supported beam is carried out to find von Mises stress responses and appearance of peaks at frequency of first bending mode is noticed in graphs of von Mises stress response, expressing high values of von Mises stress at crack tip. Inverse problem of assessing the crack depth is performed using results of FEA first mode frequency ratio and published experimental results and the method showed good results in case of high crack depth ratios.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3