Attenuation of tall flexible structures using longitudinal moving mass: Moving finite element method

Author:

Walker Mario P1,Okuma Masaaki1,Sakamoto Hiraku1

Affiliation:

1. Tokyo Institute of Technology, Tokyo, Japan

Abstract

For the foreseeable future, tall building structures will be built taller and more flexible, which means more vulnerable to excitations. As such, there is considerable interest in developing structural control methods to protect against harmful vibrations. However, challenges present themselves for conventional mass damper systems as these tend to primarily utilise lateral motion which becomes very limited as the height of structures increases. This article proposes a novel approach to reduce tall building’s long-period oscillations using mass damper motion in the much larger longitudinal direction. This motion induces Coriolis effect and if manoeuvred properly can be used to effectively reduce vibration of the primary structure. Numerical analysis was done using finite element method. The Shinjuku Mitsui Building was used as a benchmark for the primary structure, which was modelled as a vertical cantilever beam. The results showed the concept to be a viable approach for damping long-period vibrations of flexible structures. Enhancing this effect was also introduced and briefly discussed, using a multiple-degree-of-freedom damper and a constant positive velocity water-flow damper as examples. Further work continues for optimum design of the concept to make it a practical approach for tall buildings. Additionally, investigation into enhancing the damping effect is being done in more detail. This approach provides new possibilities for vibration control of any long-period structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3