Corrosion performance of carbon steel and 304 stainless steel in activated methyldiethanolamine solution using autoclave tests

Author:

Adel-Mehraban Fereshteh1ORCID,Saeidi Roya1,Moradmand Mohsen2,Zhiani Mohammad3,Raeissi Keyvan1

Affiliation:

1. Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

2. R&D, Isfahan Oil Refinery Co., Isfahan, Iran

3. Department of Chemistry, Tarbiat Modares University, Tehran, Iran

Abstract

This study evaluated the corrosion performance of carbon steel (CS) and 304 stainless steel (304 SS) under high temperature and pressure (inside an autoclave) in a CO2-saturated solution of activated methyldiethanolamine (aMDEA). The aim was to determine the effect of temperature, presence of chloride ions, degradation of the aMDEA and amount of dissolved oxygen on the corrosion resistance of these materials. The results indicated that raising the temperature between 50 and 120°C led to a higher corrosion rate of both CS and 304 SS. However, the corrosion rate of 304 SS decreased and remained stable at higher temperatures as the corrosion reaction became mass-controlled. Oxygen loading results in the passivation of both CS and 304 SS. The amine degradation products were found to accelerate the corrosion rate of CS at 50°C due to a chelation effect of iron ions, and also increase the corrosion rate of 304 SS at 120°C by causing the passive film rupture. The SCC test on U-shaped 304 SS samples showed transversal microcracks with a depth of more than 25 µm after 2 months of immersion in an autoclave containing CO2-saturated aMDEA at 120°C, which confirmed the SCC risk of 304 SS.

Funder

the Isfahan Oil Refinery Co.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3